jueves, 20 de abril de 2017

Semana del 1° al 5 Mayo 2017

Corriente y resistencia eléctrica. Materiales aislantes y conductores.







Conductores y Aislantes

Son materiales aislantes de la electricidad aquellos que dificultan e incluso impiden el paso de la corriente eléctrica (electrones). Los materiales aislantes se emplean en electricidad para evitar fugas y accidentes eléctricos.Los materiales conductores de la electricidad dejan pasar fácilmente la corriente. Son los componentes de todos los elementos del circuito eléctrico, especialmente los cables. Los materiales conductores más comunes son los metales.


Conductor eléctrico:Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica.
En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.
Aislantes eléctricos:El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 x 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre.
La elección del material aislante suele venir determinada por la aplicación. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio,porcelana u otro material cerámico.



Completa las frases


Semana del 24 al 28 Abril 2017



1.3 EFECTO DE ATRACCIÓN Y REPULSIÓN ELECTROSTATICA

1.3 Efecto de atracción y repulsión electrostáticas

La electrostática es la rama de la física de la que estudia los efectos que se producen entre cuerpos cargados eléctricamente por consiguiente estudia las cargas eléctricas en reposo
La electrodinámica estudia el comportamiento de los campos eléctricos y magnéticos cuando las cargas están en movimiento 
el estudio de los fenómenos electrostáticas se remontan a época de la antigua Grecia con Tales de Mileto 
william gilberto descubriría que otro materiales como el vidrio, azufre  pero presentan las mismas   propiedades

FORMAS DE CARGAR ELÉCTRICAMENTE UN CUERPO

1 por contacto
se puede cargar un cuerpo al ponerlo en contacto con otro previamente cargado
2 frotamiento
al frotar dos cuerpos eléctricamente neutros( número de electrones=número de protones)
3 por inducción
cuando acercamos un cuerpo electrizado a un cuerpo neutro

charles columbos fue un físico e ingeniero francés que en 1785 describió de manera matemática la fuerza de atracción y repulsión

CAMPO ELÉCTRICO

Cuando se tienen cargas eléctricas existen una región en el espacio alrededor de ella en la que se persisten los efecto, a esa zona se le conoce como campo eléctrico
el campo eléctrico es representada mediante un modelo que muestra la interacción entre cuerpos







sábado, 1 de abril de 2017

Semana del 3 al 7 Abril 2017

Modelo atómico

Un modelo atómico es una representación estructural de un átomo, que trata de explicar su comportamiento y propiedades. De ninguna manera debe ser interpretado como un dibujo de un átomo, sino más bien como el diagrama conceptual de su funcionamiento. A lo largo del tiempo existieron varios modelos atómicos y algunos más elaborados que otros:

Proceso histórico del desarrollo del modelo atómico; aportaciones de Thomson, Rutherford y Bohr; alcances y limitaciones de los modelos.
En el proceso histórico del desarrollo del modelo atómico tenemos la aportación de Thomsom, Rutherford y Bohr. 

Aportaciones de Thomson se le considera uno de los descubridores del electrón gracias a sus experimentos con los rayos catódicos. Thomson creía que el electrón era el componente universal de la materia y fue el primero en sugerir una teoría sobre la estructura interna del átomo.



Aportaciones de Rutherford después del descubrimiento de que el átomo estaba formado por partículas positivas y negativas, la siguiente cuestión a resolver fue ¿cómo están organizadas estas partículas? Rutherford creó el primer modelo precursor de la concepción actual.


Aportaciones de Bohr postuló que los electrones que circulan en los átomos obedecen a las leyes de la mecánica cuántica.
Características básicas del modelo atómico: núcleo con protones y neutrones, y electrones en órbitas. Carga eléctrica del electrón. 
El modelo atómico de Bohr presenta las siguientes características:

* Los electrones no son atraídos por el núcleo, sino que se mueven alrededor del él describiendo órbitas circulares.
* Los electrones adquieren energía, se excitan, por efecto del calor o la electricidad. Al adquirir mayor energía pasan de una órbita interior a otra exterior de mayor energía. De esta manera se vuelven inestables. Entonces, para recuperar su estabilidad regresan a la órbita interior, perdiendo la energía adquirida.
* El nivel energético de los electrones depende de la órbita en que se encuentren.

La carga eléctrica elemental es la del electrón. El electrón es la partícula elemental que lleva la menor carga eléctrica negativa que se puede aislar. Como la carga de un electrón resulta extremadamente pequeña se toma en el SI (Sistema Internacional) para la unidad de Carga eléctrica el Culombio que equivale a 6,24 10E18 electrones.

En la tabla adjunta se muestra la masa y la carga de las partículas elementales.

Efectos de atracción y repulsión electrostáticas.
La materia contiene dos tipos de cargas eléctricaspositiva y negativa. Si frotas dos objetos uno adquiere un exceso de carga negativa y el otro adquiere un exceso de carga positiva.
Dos objetos con carga positiva se repelen. Dos objetos con carga negativa también se repelen, pero un objeto con carga positiva atraerá a un objeto con carga negativa.
Materiales aislantes: estos materiales no conducen la electricidad, en cambio, los Materiales conductores: permiten el paso de la electricidad en ellos. 


Corriente y resistencia eléctrica. Materiales aislantes y conductores.
Las cargas eléctricas, son capaces de moverse dentro de un cuerpo, pero su movimiento depende del tipo de material en donde se encuentren. A grandes rasgos, podemos distinguir entre dos tipos de materiales de acuerdo con la resistencia que oponen al movimiento de los electrones los aislantes y los conductores.
Pos su parte, lo conductores son materiales que ofrecen una resistencia pequeña al movimiento de los electrones, de hecho algunos de los electrones pueden pasar de un átomo a otro libremente se dice entonces que un conductor posee electrones libres.
Materiales aislantes: estos materiales no conducen la electricidad, en cambio, los Materiales conductores: permiten el paso de la electricidad en ellos. 

Experimento de Rutherford



Modelos atómicos

sábado, 25 de marzo de 2017

Semana del 27 al 31 Marzo 2017

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.
El principio de la conservación de la energía establece que el valor de la energía en un sistema sobre el cual no interactúa ningún otro no varía con el tiempo. Aplicando este principio a los sistemas termodinámicos se puede extraer la consecuencia de que el aumento de la cantidad de energía térmica en un sistema es igual a la suma del incremento de la energía interna del sistema y el trabajo.
A mediados del siglo XIX se realizaron los experimentos que demostraron la relación entre el calor y el trabajo. James Joule publicó en 1850 la obra El equivalente mecánico del calor, explicando los experimentos que llevó a cabo y que le permitieron demostrar que la energía producida por el trabajo tiene calor como resultado y puede medirse: existe una relación de equivalencia entre trabajo y calor. La energía suministrada como trabajo se transforma en otro tipo de energía, en calor.
Para sus pruebas ideó un aparato que consistía en un recipiente hermético con un eje rotatorio con ocho paletas que agitaban un líquido. El eje estaba conectado con poleas a dos pesos conocidos.  Al dejar caer los pesos, el eje giraba y movía las palas que, a su vez, agitaban el líquido del recipiente. Tras repetir veinte veces el mismo experimento, las conclusiones fueron:
1) El calor producido por la fricción es proporcional a la cantidad de trabajo mecánico existente
2) Es necesaria una fuerza mecánica equivalente a la caída de 772 libras desde la altura de un pie para aumentar en 1ºF la temperatura de una libra de agua




Principios de Conservación De la Energía

Monografias.com
El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.
En el caso de la energía mecánica se puede concluir que, en ausencia de rozamientos y sin intervención de ningún trabajo externo, la suma de las energías cinética y potencial permanece constante. Este fenómeno se conoce con el no En todos los casos donde actúen fuerzas conservativas, la energía mecánica total, es decir, la energía cinética más la energía potencial en cualquier instante de la trayectoria es la misma; por ejemplo, la fuerza gravitacional, pues en cualquier trabajo que realice un cuerpo contra la fuerza de gravedad de la Tierra, la energía se recuperará íntegramente cuando el cuerpo descienda.
Em = Ec + Ep
donde Em = energía mecánica total expresada en joules. Sustituyendo las expresiones de las energías:
Em = 1/2mv2 + mgh.
En resumen, "la energía existente en un sistema es una cantidad constante que no se crea ni se destruye, únicamente se transforma". Respecto de fuerzas no conservativas (por ejemplo la fricción) no podemos hablar de energía potencial; sin embargo, la conservación de la energía se mantiene en la forma:
Em = Ec + Q donde Q es ahora el calor disipado al ambiente. En este caso la EC disminuyesiempre y eventualmente el calor transporta la energía a la atmósfera.Principios de la Conservación de la Energía Mecánica
Monografias.com


Leer más: http://www.monografias.com/trabajos96/conservacion-energia/conservacion-energia.shtml#ixzz4cPOfw7ke




sábado, 11 de marzo de 2017

Semana del 13 al 17 Marzo 2017




LOS CAMBIOS DE ESTADO: GRÁFICAS DE CALENTAMIENTO Y ENFRIAMIENTO


La materia se encuentra habitualmente en tres estados de agregación: el sólido, el líquido y el gaseoso. Una misma sustancia aparece en uno u otro estado en función de las condiciones de presión y temperatura a las que se encuentre sometida, por lo que mediante la variación de estas se puede conseguir la transformación entre dos estados diferentes.
La forma más sencilla, o más evidente, de cambio de estado es la que tiene lugar por modificación de la temperatura, mediante intercambio de calor entre el sistema material y su entorno. Este proceso puede ocurrir en dos sentidos:
  • Por calentamiento: las sustancias sólidas pasan a estado líquido o gaseoso (cambios de estado progresivos).
  • Por enfriamiento, las sustancias gaseosas pasan a estado líquido o sólido (cambios de estado regresivos).
Según la teoría cinético-molecular, al aumentar la temperatura de una sustancia, se produce un incremento de la energía cinética media de sus partículas, por lo que estas adquieren mayor movilidad, venciendo las fuerzas de cohesión que existen en estado sólido y, en menor medida, en estado líquido, hasta llegar a ser despreciables en estado gaseoso. En sentido inverso, al disminuir la temperatura las partículas pierden movilidad y van dominando las interacciones atractivas que conducen a agrupaciones entre ellas y a estados de agregación cada vez más ordenados. Los cambios de estado pueden ocurrir, por tanto, de dos maneras entre cada uno de los estados físicos, denominándose, en cada caso, de la siguiente manera:
cambios_de_estado_de_una_susutancia_TCM.png
  • El cambio de estado sólido a estado líquido se denomina fusión. El proceso inverso se conoce como solidificación.
  • El cambio de estado líquido a estado gaseoso se denomina vaporización. El proceso inverso se llama condensación, aunque también licuación (o licuefacción).
  • El cambio directo entre el estado sólido y el estado gaseoso (sin pasar por el estado líquido) se conoce, en ambos sentidos, como sublimación, distinguiéndose: sublimación progresiva (el salto de sólido a gas) y sublimación regresiva o inversa (o condensación de gas a sólido).
Durante las transiciones la temperatura no varía, ya que todo el intercambio energético está vinculado al paso de un estado a otro. En el caso de la fusión, la temperatura a la que transcurre se denomina punto de fusión (en el que coexisten en equilibrio el sólido y el líquido), que es característico de cada sustancia (o mezcla de sustancias). Para la mayoría de las sustancias, entre las que se encuentra el agua, la temperatura de solidificación (congelación) coincide con la de fusión.
Por su parte, la vaporización puede producirse de dos maneras:
  • Por ebullición, cuando todas las partículas alcanzan la temperatura necesaria para que se produzca el cambio de estado, conocida como punto de ebullición y que, como en la fusión, se mantiene constante durante el cambio de estado. Es lo que ocurre, por ejemplo, cuando calentamos agua hasta que comienza a hervir.
  • Por evaporación, cuando solo una parte de las partículas, generalmente superficiales, son capaces de escapar al estado gaseoso. Este tipo de vaporización tiene lugar a temperaturas inferiores a la de ebullición y es responsable, por ejemplo, de que los charcos se evaporen o se seque la ropa húmeda.
vaporizacion-ebullicion.png
En algunas sustancias, como el yodo o la naftalina, se observa que el paso a estado gaseoso se produce directamente desde el estado sólido, sin pasar por el estado líquido. Esta “evaporación” desde el estado sólido es lo que se conoce como sublimación, y la temperatura a la cual ocurre se denomina punto de sublimación.
Puntos-fusion-ebullicion
Puntos de fusión y ebullición de algunas sustancias comunes
La representación gráfica de la temperatura de una sustancia o sistema con respecto al tiempo conduce a las gráficas de calentamiento o enfriamiento en las que se visualizan perfectamente los cambios de estado y las variaciones de temperatura entre ellos:
Grafica-calentamiento
Gráfica de calentamiento de una sustancia inicialmente sólida que se funde a 17 ºC y entra en ebullición a 115 ºC.
Grafica-enfriamiento
Gráfica de enfriamiento de un gas que condensa a 78 ºC y se congela a -15 ºC.

CUESTIÓN RESUELTA

Ejercicio-resuelto-cambio-de-estado-cuestión

VÍDEO RECOMENDADO: EXPERIENCIAS DE CAMBIOS DE ESTADO

sábado, 4 de marzo de 2017

Semana del 6 al 10 Marzo 2017

2.3 Temperatura y sus escalas de medición.






La temperatura

La Temperatura es una propiedad de la materia que está relacionada con la sensación de calor o frío que se siente en contacto con ella. Cuando tocamos un cuerpo que está a menos temperatura que el nuestro sentimos una sensación de frío, y al revés de calor. Sin embargo, aunque tengan una estrecha relación, no debemos confundir la temperatura con el calor.
Cuando dos cuerpos, que se encuentran a distinta temperatura, se ponen en contacto, se produce una transferencia de energía, en forma de calor, desde el cuerpo caliente al frío, esto ocurre hasta que las temperaturas de ambos cuerpos se igualan. En este sentido, la temperatura es un indicador de la dirección que toma la energía en su tránsito de unos cuerpos a otros.
La medida
El instrumento utilizado habitualmente para medir la temperatura es el termómetro. Los termómetros de líquido encerrado en vidrio son los más populares; se basan en la propiedad que tiene el mercurio, y otras sustancias (alcohol coloreado, etc.), de dilatarse cuando aumenta la temperatura. El líquido se aloja en una burbuja -bulbo- conectada a un capilar (tubo muy fino). Cuando la temperatura aumenta, el líquido se expande por el capilar, así, pequeñas variaciones de su volumen resultan claramente visibles.
Escalas
Actualmente se utilizan tres escalas para medir al temperatura, la escala Celsius es la que todos estamos acostumbrados a usar, la Fahrenheit se usa en los países anglosajones y la escala Kelvinde uso científico.


NombreSímboloTemperaturas de referenciaEquivalencia
Escala CelsiusºCPuntos de congelación (0ºC) y ebullición del agua (100ºC)
Escala FahrenhitºFPunto de congelación de una mezcla anticongelante de agua y sal y temperatura del cuerpo humano.ºF = 1,8 ºC + 32
Escala KelvinKCero absoluto (temperatura más baja posible) y punto triple del agua.K = ºC + 273


Experimento interactivo:
Para realizar este experimento ve a la liga  de enlace.


Actividad: Medir las temperaturas de fusión y ebullición del agua en las distintas escalas. Enciende el mechero pulsando el botón "Encender", para hacer hervir el agua e introduce el termómetro en los vasos (arrastrándolo con el ratón) para medir las temperaturas. Elige la escala del termómetro arrastrando el deslizador.
1. Escala Celsius:
    Temperatura de fusión del agua:  ºC. Temperatura de ebullición:  ºC 
2. Escala Fahrenheit:
    Temperatura de fusión del agua:  ºF. Temperatura de ebullición:  ºF 
3. Escala Kelvin:
    Temperatura de fusión del agua:  K. Temperatura de ebullición:  K 

Para tener en cuenta: La temperatura de fusión (a la que una sustancia cambia del estado sólido al líquido) y la temperatura de ebullición (a la que se forman burbujas de vapor en el interior de un líquido) son otras dos propiedades características de las sustancias que, al igual que la densidad, son muy útiles para su identificación.






sábado, 25 de febrero de 2017

Semana del 27 Febrero al 3 Marzo 2017



¿QUÉ ES EL PRINCIPIO DE PASCAL?

   El Principio de Pascal o Ley de Pascal define el siguiente enunciado: 

   “la presión ejercida sobre un fluido poco compresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido” 

   ¿Qué quiere decir esto?...Expliquémoslo con un ejemplo fácil para entenderlo de la mejor manera posible: 

   Imaginemos que tenemos una bola hueca como la de la imagen que ves a continuación y esta bola tiene diferentes agujeros. Si llenamos una jeringuilla de agua o cualquier otro fluido poco compresible y metemos la jeringuilla en uno de los agujeros de la bola y presionamos el fluido veremos cómo este fluido sale por todos los agujeros de la bola con la misma intensidad y presión. Ésta sería una explicación práctica del principio de Pascal. 

   La presión que ejercemos sobre la jeringuilla que se transmite al líquido que hay dentro se transmite con igual intensidad en todas las direcciones y todos los puntos de ese fluido. 
De la misma manera que en la siguiente imagen podemos explicar cómo si tenemos una vasija rellena de agua (o cualquier otro fluido poco compresible) con dos tapones de corcho y aplicamos una fuerza con un martillo a uno de los 2 tapones de corcho vemos como el otro tapón sale disparado exactamente con la misma fuerza que hemos aplicado en el primer corcho. Los corchos deben estar en contacto con el líquido y el recipiente completamente lleno de agua. Puedes hacer este ejemplo en casa, con cuidado siempre de no hacerte daño con el martillo. Si eres menor de edad, pregúntales siempre antes a tus padres o algún mayor que esté cerca para ayudarte. Éste ejemplo es muy parecido a lo que se conoce como Prensa Hidráulica, que es lo que mejor explica el principio de Pascal.

     ¿PARA QUÉ SIRVE EL PRINCIPIO DE PASCAL?

   El Principio de Pascal nos sirve fundamentalmente para levantar pesos muy grandes con muy poca fuerza… como se demuestra en las prensas hidráulicas, elevadores, frenos…etc. En el sector de la maquinaria industrial el Principio De Pascal se utiliza muchísimo. 

   Si la fórmula de la Presión (P) es: 

   Presión = Fuerza/Área;  P=F/A 


   ¿Cómo harías para elevar un cuerpo de 1000 kg por ejemplo?



   Un coche puede pesar 1000 kg perfectamente, veamos pues cómo podemos hacerlo gracias a las prensas o elevadoras hidráulicas: En la imagen tenemos un coche de 1000 kg encima de un disco con un radio de 2 metros y por otro lado tenemos otro disco de 0.5 metros y luego el depósito lleno de agua. La presión que tenemos que ejercer en el disco pequeño será la necesaria para poder elevar el coche de 1000 kg. ¿Cuál es? 

   F1= Fuerza que tenemos que ejercer en el disco pequeño.

   A1 = El área del disco pequeño 

   F2= Fuerza en el disco grande 

   A2= Área del disco grande. 

   Si el principio de Pascal nos dice que esas 2 presiones son iguales, es decir, la presión ejercida en el disco pequeño y la presión ejercida en el disco grande. P1 es la presión para el disco pequeño y P2 la presión para el disco grande….tenemos entonces: 

                                       F1/ A1 = F2/ A2 



A continuación te dejo dos videos para que te muestren cómo hacer tu prensa hidraúlica y presentarla para ganarte participaciones.






Niños felices, escuela feliz, mundo feliz